Appendix 5 – Impact Assessment Matrix | | IMPACT D | ESCRIPTION | ON | | | Pre | -Mitigatio | on | | | | | Post Mi | tigation | | | | | Priority Fac | tor Criteria | | | |----------------|---|----------------|------------------|------------|------------|--------------|---------------|-------------------|-----------------|---------------------------|------------|--------|--------------|---------------|-------------------|-----------------|---------------------------|----------------|-------------------|------------------------|--------------------|-------------| | ldenti
fier | Impact | Alternat ive | Phase | Nat
ure | Ext
ent | Durat
ion | Magnit
ude | Reversi
bility | Proba
bility | Pre-
mitigatio
n ER | Natur
e | Extent | Durati
on | Magni
tude | Rever
sibility | Proba
bility | Post-
mitigation
ER | Confiden
ce | Cumulative Impact | Irreplaceab
le loss | Priority
Factor | Final score | | 1 | Air Quality - Increase in air quality impacts due to constructio n of the road | Alternat ive 1 | Constructio
n | -1 | 3 | 2 | 3 | 2 | 4 | -10.0 | -1 | 3 | 1 | 3 | 2 | 3 | -6.8 | | 2 | 1 | 1.13 | -7.6 | | 2 | Air Quality - Increase in air quality impacts due to constructio n of the wells | Alternat ive 1 | Constructio
n | -1 | 2 | 2 | 4 | 2 | 4 | -10.0 | -1 | 2 | 1 | 3 | 2 | 3 | -6.0 | Medium | 2 | 1 | 1.13 | -6.8 | | 3 | Air Quality - Increase in air quality impacts due to the operation of vehicles on unpaved roads | Alternat ive 1 | Operation | -1 | 2 | 2 | 3 | 2 | 4 | -9.0 | -1 | 2 | 2 | 2 | 2 | 3 | -6.0 | Medium | 2 | 1 | 1.13 | -6.8 | | 4 | Air Quality - Increase in air quality impacts due to decommiss ioning and closure | Alternat ive 1 | Decommis sioning | -1 | 3 | | 4 | 2 | 4 | -11.0 | -1 | 2 | 2 | 3 | | 3 | -6.8 | | 1 | 1 | 1.00 | | | 5 | Noise -
Increase in
noise
levels due
to
constructio
n of the
wells | Alternat ive 1 | Constructio
n | -1 | 3 | 2 | 4 | 2 | 4 | -11.0 | -1 | 3 | 2 | 3 | | 3 | -7.5 | | 1 | 1 | 1.00 | | | 6 | Noise -
Increase in
noise
levels | Alternat ive 1 | Decommis sioning | -1 | 3 | | 4 | 2 | 4 | -11.0 | | 3 | 2 | | | 3 | -7.5 | | 1 | 1 | 1.00 | | | 7 | Groundwat
er
deterioratio
n and | Alternat ive 1 | Constructio
n | -1 | 2 | 2 | 2 | 2 | 2 | -4.0 | -1 | 2 | 2 | 1 | 2 | 1 | -1.8 | Medium | 1 | 1 | 1.00 | | | | siltation
due to |----|---|----------------|------------------|----|---|---|---|---|---|------|----|---|---|---|---|---|------|--------|---|---|------|------| | | contaminat
ed
stormwater | run-off
from the
constructio | n area. | | | | | | | | | | | | | | | | 3 | | | | | | | 0 | Poor quality leachate may emanate from the construction camp which may have a negative impact on groundwat | Alternat | Constructio | | 2 | 2 | 2 | 2 | 2 | 7.5 | 1 | | 2 | 2 | 2 | 2 | 4.5 | Modium | 2 | | 1.25 | 5.6 | | 8 | er quality. Mobilisatio | ive 1 | n | -1 | 2 | 2 | 3 | 3 | 3 | -7.5 | -1 | 2 | 2 | 2 | 3 | 2 | -4.5 | Medium | 2 | 2 | 1.25 | -5.6 | | 9 | n and maintenan ce of heavy vehicle and machinery on-site may cause hydrocarbo n contaminati on of groundwat er resources. | | Constructio
n | -1 | 3 | 2 | 4 | 4 | 3 | -9.8 | -1 | 2 | 2 | 4 | 4 | 2 | -6.0 | Medium | 2 | 2 | 1.25 | -7.5 | | 10 | Poor
storage
and
manageme
nt of
hazardous
chemical
substances
on-site
may cause
groundwat
er
pollution. | Alternat ive 1 | Constructio
n | -1 | 3 | 2 | 3 | 3 | 3 | -8.3 | -1 | 2 | 2 | 2 | 3 | 2 | -4.5 | Medium | 2 | 2 | 1.25 | -5.6 | | | Poor storage and manageme nt of hazardous chemical substances on-site may cause | Alternat | Operation | -1 | 3 | 2 | 4 | 4 | 3 | -9.8 | -1 | 2 | 2 | 4 | 4 | 2 | | Medium | 2 | 2 | | | | | groundwat | | | | | | | | | | | | | | | | | 1 | | | | | |----|--|-------------------|---------------------|----|---|---|---|---|---|-------|----|---|---|---|---|---|------|--------|---|---|-------|------| | | er
pollution. | Leakage of harmful substances from tanks or other equipment may cause groundwat er pollution. | Alternat
ive 1 | Operation | -1 | 3 | 2 | 4 | 4 | 3 | -9.8 | -1 | 2 | 2 | 4 | 4 | 2 | -6.0 | Medium | 2 | 2 | 1.25 | -7.5 | | | Migration of saline groundwat er from the deep, fractured aquifer to the overlying, potable aquifer(s) during the borehole closure and decommiss ioning phase. | Alternat ive 1 | Decommis
sioning | -1 | 3 | 3 | 5 | 5 | 4 | -16.0 | -1 | 2 | 2 | 4 | 4 | 3 | | Medium | 2 | | 1.25 | | | | Migration of stray gas from the deep, fractured aquifer to the overlying, potable aquifer(s) borehole closure and decommiss ioning | Alternat ive 1 | Decommis
sioning | -1 | 3 | 3 | 5 | 5 | 4 | -16.0 | -1 | 2 | 2 | 4 | 4 | 3 | | Medium | 2 | 2 | 1.25 | | | | Hydrology -
Loss of
watercours
e
vegetation | Alternat ive 1 | Constructio
n | -1 | 3 | 1 | 1 | 2 | 2 | -3.5 | -1 | 2 | 1 | 1 | 2 | 1 | -1.5 | Low | 2 | 1 | 1.13 | -1.7 | | | Erosion | Alternat ive 1 | Constructio n | -1 | 3 | 2 | 1 | 2 | 4 | -8.0 | -1 | 2 | 1 | 2 | 2 | 2 | | Low | 2 | 1 | 1.13 | | | | Stormwater | | | | J | | | _ | | 0.0 | | _ | , | | | | 5.0 | | | | 71.13 | 0.0 | | 17 | | Alternat ive 1 | Constructio
n | -1 | 3 | 2 | 2 | 2 | 4 | -9.0 | -1 | 1 | 1 | 2 | 2 | 2 | -3.0 | Medium | 2 | 1 | 1.13 | -3.4 | | 18 | Alien
and/or | Alternat ive 1 | Constructio
n | -1 | 3 | 4 | 3 | 3 | 2 | -6.5 | -1 | 2 | 2 | 1 | 2 | 1 | -1.8 | Low | 2 | 1 | 1.13 | -2.0 | | | Invasive
Vegetation |----|--|----------------|---------------------|----|---|---|---|---|---|-------|----|---|---|---|---|---|-------|--------|---|---|------|-------| | 19 | Alterations
of the river
banks and
river bed | Alternat ive 1 | Constructio
n | -1 | 2 | 2 | 2 | 3 | 3 | -6.8 | -1 | 2 | 2 | 1 | 2 | 2 | -3.5 | Medium | 2 | 2 | 1.25 | -4.4 | | 20 | Erosion | Alternat ive 1 | Operation | -1 | 3 | 2 | 3 | 2 | 2 | -5.0 | -1 | 2 | 2 | 3 | 2 | 1 | -2.3 | Low | 2 | 2 | 1.25 | -2.8 | | 21 | Stormwater contaminati on | Alternat ive 1 | Operation | -1 | 2 | 2 | 3 | 3 | 3 | -7.5 | -1 | 2 | 2 | 1 | 2 | 2 | -3.5 | Medium | 2 | 2 | 1.25 | -4.4 | | 22 | Alien
and/or
Invasive
Vegetation | Alternat ive 1 | Operation | -1 | 3 | 4 | 3 | 3 | 3 | -9.8 | -1 | 2 | 2 | 1 | 3 | 2 | | Medium | 2 | 2 | 1.25 | -5.0 | | 23 | Erosion | Alternat ive 1 | Decommis sioning | -1 | 2 | 4 | 3 | 2 | 2 | -5.5 | -1 | 2 | 3 | 3 | 2 | 1 | -2.5 | Low | 2 | 2 | 1.25 | -3.1 | | 24 | Alien
and/or
Invasive
Vegetation | Alternat ive 1 | Decommis
sioning | -1 | 3 | 4 | 3 | 3 | 2 | -6.5 | -1 | 2 | 2 | 1 | 2 | 1 | | Low | 2 | 1 | 1.13 | -2.0 | | 25 | Impact on unidentified heritage resources | Alternat ive 1 | Constructio
n | -1 | 2 | 5 | 1 | 5 | 1 | -3.3 | -1 | 1 | 2 | 2 | 4 | 2 | | Medium | 2 | 3 | 1.38 | -6.2 | | 26 | Impact on burial grounds | Alternat ive 1 | Constructio | -1 | 2 | 2 | 5 | 5 | 4 | -14.0 | -1 | 1 | 2 | 2 | 5 | 2 | | Medium | 2 | 3 | 1.38 | -6.9 | | 27 | Impact on
historic to
recent sites
with
possible
graves | Alternat ive 1 | Constructio
n | -1 | 2 | 2 | 4 | 5 | 3 | -9.8 | -1 | 1 | 2 | 2 | 5 | 2 | | Medium | 1 | 3 | 1.25 | -6.3 | | 28 | Impact on
structures
of medium
heritage
significanc
e | Alternat ive 1 | Constructio
n | -1 | 1 | 2 | 3 | 5 | 3 | -8.3 | -1 | 1 | 2 | 3 | 3 | 2 | | Medium | 2 | 2 | 1.25 | | | 29 | Impact on palaeontol ogy | Alternat ive 1 | Constructio n | -1 | 2 | 5 | 4 | 5 | 4 | -16.0 | -1 | 1 | 5 | 2 | 5 | 2 | -6.5 | Medium | 2 | 3 | 1.38 | | | 30 | Impact on livelihoods | Alternat ive 1 | Constructio n | -1 | 2 | 2 | 4 | 4 | 5 | -15.0 | -1 | 2 | 2 | 2 | 3 | 5 | -11.3 | High | 2 | 2 | 1.25 | -14.1 | | 31 | Impact on livelihoods | Alternat ive 1 | Operation | -1 | 3 | 2 | 5 | 4 | 5 | -17.5 | -1 | 2 | 2 | 4 | 3 | 3 | -8.3 | High | 2 | 2 | 1.25 | -10.3 | | 32 | Nuisance
factor due
to increase
in ambient
dust and
noise | Alternat ive 1 | Constructio
n | -1 | 2 | 2 | 3 | 3 | 5 | -12.5 | -1 | 2 | 2 | 3 | 3 | 4 | | High | 2 | 1 | 1.13 | | | 33 | Damage to farm roads, existing services, | Alternat ive 1 | Constructio
n | -1 | 3 | 2 | 5 | 3 | 5 | -16.3 | -1 | 2 | 2 | 4 | 2 | 4 | -10.0 | High | 2 | 1 | 1.13 | -11.3 | | | and
infrastructu
re |----|---|----------------------------|------------------|----------|---|---|---|---|---|---------------|----------|---|---|---|---|---|-------|------------------|---|---|------|-------| | 34 | Damage to farm roads, existing services, and infrastructure | Alternat ive 1 | Operation | -1 | 3 | 2 | 5 | 3 | 4 | -13.0 | -1 | 2 | 2 | 4 | 3 | 4 | -11.0 | High | 3 | 1 | 1.25 | -13.8 | | 35 | Impacts on
livelihoods
due to
behaviour
of
contractors | Alternat ive 1 | Constructio
n | -1 | 3 | 2 | 4 | 2 | 4 | -11.0 | -1 | 2 | 2 | 3 | 2 | 3 | -6.8 | High | 2 | 1 | 1.13 | -7.6 | | 36 | Impacts on
safety and
security of
local
residents | Alternat ive 1 | Constructio
n | -1 | 3 | 2 | 5 | 3 | 4 | -13.0 | -1 | 3 | 2 | 3 | 3 | 4 | -11.0 | High | 3 | 3 | 1.50 | -16.5 | | 37 | Impacts on
safety and
security of
local
residents | Alternat ive 1 | Operation | -1 | 3 | 2 | 5 | 3 | 5 | -16.3 | -1 | 3 | 2 | 4 | 3 | 4 | -12.0 | High | 2 | 2 | 1.25 | -15.0 | | 38 | Impacts on sense and spirit of place | Alternat ive 1 | Constructio
n | -1 | 2 | 2 | 5 | 3 | 5 | -15.0 | -1 | 2 | 2 | 4 | 2 | 4 | -10.0 | High | 3 | 2 | 1.38 | -13.8 | | 39 | Increase in social pathologies | Alternat ive 1 | Constructio | -1 | 3 | 2 | 3 | 3 | 4 | -11.0 | -1 | 3 | 2 | 3 | 2 | 4 | -10.0 | Medium | 2 | 1 | 1.13 | -11.3 | | | Impact on Existing Agricultural Landscape Character | Alternat ive 1 | Constructio
n | -1 | 2 | 1 | 3 | 2 | 4 | -8.0 | -1 | 2 | 1 | 3 | 2 | 4 | -8.0 | Medium | 2 | 1 | 1.13 | -9.0 | | 41 | Impact on Existing Agricultural Landscape Character | Alternat ive 1 | Operation | -1 | 1 | 2 | 1 | 2 | 2 | -3.0 | -1 | 1 | 2 | 1 | 2 | 2 | -3.0 | Medium | 2 | 1 | 1.13 | -3.4 | | 42 | Impact on
Existing
Natural
Landscape
Character | Alternat ive 1 | Constructio
n | -1 | 2 | 1 | 3 | 2 | 4 | -8.0 | -1 | 1 | 1 | 2 | 2 | 2 | | Medium | 2 | 1 | 1.13 | | | | Impact on
Existing
Natural
Landscape | Alternat ive 1 | Operation | -1 | 2 | 2 | 2 | 2 | 3 | -6.0 | -1 | 1 | 2 | 1 | 1 | 2 | | Medium | 2 | 1 | 1.13 | | | | The visual impact on views from | Alternat | Constructio | -1 | | 1 | 3 | 2 | 4 | | 4 | 2 | 4 | 2 | 2 | 3 | | | 2 | 1 | | | | | local roads Change of Natural of | ive 1
Alternat
ive 1 | Constructio | -1
-1 | 2 | 2 | 4 | 2 | 4 | -8.0
-10.0 | -1
-1 | 2 | 1 | 1 | 2 | 3 | | Medium
Medium | 2 | 1 | 1.13 | | | | Views from
Homestead |----|--|----------------|-----------------------|-----------|---|---|---|---|---|---------------|----|---|---|---|---|---|------|--------------|---|---|------|---------------| | | The visual impact on views from local | 46 | homestead
s due to
Lighting | Alternat ive 1 | Constructio
n | -1 | 2 | 1 | 4 | 1 | 4 | -8.0 | -1 | 1 | 1 | 1 | 1 | 1 | -1.0 | Medium | 1 | 1 | 1.00 | -1.0 | | 47 | The visual impact on views from local homestead s due to Lighting | Alternat ive 1 | Operation | -1 | 2 | 2 | 4 | 1 | 4 | -9.0 | -1 | 1 | 2 | 1 | 1 | 1 | -1.3 | Medium | 1 | 1 | 1.00 | -1.3 | | | Temporary disturbanc e of wildlife due to increased human presence and possible use of machinery and/or | Alternat | | | | | | · | | 5.0 | | | | | | | | | | | 1.00 | 1.0 | | 48 | vehicles. Destruction , further loss and fragmentati on of the vegetation community | Alternat | Planning Constructio | <u>-1</u> | 2 | 2 | 2 | 3 | 2 | -3.5
-11.0 | | 2 | 1 | 3 | 1 | 2 | | High
High | 2 | 2 | 1.00 | -2.0
-11.3 | | 50 | Introduction of alien species, especially | Alternat ive 1 | Constructio | -1 | 2 | 3 | 3 | 2 | 3 | -7.5 | | 1 | 2 | 2 | 3 | 3 | | High | 1 | 1 | 1.00 | | | 51 | Erosion due to storm water runoff and | Alternat ive 1 | Constructio
n | -1 | 2 | 3 | 3 | 2 | 3 | -7.5 | | 2 | 2 | 2 | 3 | 3 | | Medium | 2 | 1 | 1.13 | | | | Displacem ent of faunal community due to habitat loss, direct mortalities and disturbanc e (road collisions, | Alternat ive 1 | Constructio
n | -1 | 2 | 2 | 4 | 3 | 3 | -8.3 | | 1 | 2 | 3 | 3 | 3 | | Medium | 1 | 2 | 1.13 | | | | noise, light, | | ĺ | |
 | | ĺ | | | | | 1 | | | | İ | | 7 | | | | 7 | |----|---------------------------|----------------|---------------|----|------|---|---|---|---|------|----|---|----------|-----|---------|---|------|----------|---|---|------|-------| | | dust, | vibration
and | poaching). Potential | leaks,
discharges, | pollutant | from activities | leaching into the | surroundin
g | 53 | environme
nt | Alternat ive 1 | Constructio n | -1 | 3 | 3 | 3 | 3 | 3 | -9.0 | -1 | 2 | 2 | 2 | 3 | 3 | -7.5 | High | 1 | 1 | 1.00 | -7.5 | | | Environme
ntal | pollution | due to
potential | leaks,
discharges, | pollutant
leaching | into the surroundin | g | A It a wa a t | 54 | environme
nt | Alternat ive 1 | Operation | -1 | 3 | 3 | 3 | 3 | 3 | -9.0 | -1 | 2 | 2 | 3 | 3 | 2 | -5.0 | High | 1 | 1 | 1.00 | -5.0 | | | Introductio
n of alien | species,
especially | Alternat | 55 | plants | ive 1 | Operation | -1 | 2 | 3 | 3 | 2 | 3 | -7.5 | -1 | 1 | 2 | 2 | 3 | 3 | -6.0 | High | 1 | 1 | 1.00 | -6.0 | | | Continued fragmentati | on, further
loss and | fragmentati on of the | 56 | vegetation | Alternat ive 1 | Operation | -1 | 2 | 2 | 3 | 2 | 4 | -9.0 | -1 | 2 | 3 | 3 | 3 | 3 | -8.3 | High | 2 | 2 | 1.25 | -10.3 | | 30 | Vegetation | 1401 | Spoidtion | | | | 3 | | | 3.0 | | | | - 3 | <u></u> | 3 | 0.3 | 1 11911 | 2 | | 1.20 | 10.0 | | | loss due to erosion | and
encroachm | ent by alien invasive | 57 | plant
species | Alternat ive 1 | Operation | -1 | 2 | 2 | 3 | 2 | 3 | -6.8 | -1 | 2 | 3 | 2 | 2 | 2 | -15 | Medium | 2 | 1 | 1.13 | -5.1 | | 31 | Potential | IVEI | Ореганоп | -1 | ۷ | 2 | 3 | ۷ | 3 | -0.0 | -1 | 2 | <u> </u> | | | | -4.5 | Medialli | 2 | | 1.13 | -3.1 | | | leaks,
discharges, | pollutant
from | activities
leaching | Alternat | 58 | into the | ive 1 | Operation | -1 | 3 | 3 | 3 | 3 | 3 | -9.0 | -1 | 2 | 3 | 2 | 3 | 3 | -7.5 | High | 1 | 1 | 1.00 | -7.5 | |] [| surroundin |-----|---------------------------|----------------|------------------|----|---|---|---|---|---|-------|----|---|---|---|---|---|------|--------|---|---|------|------| | | g
environme | nt | Continued displaceme | nt and | fragmentati | on of the faunal | community | (including | threatened | or
protected | species) | due to
ongoing | anthropoge | nic | disturbanc es (noise, | dust and | vibrations) | and habitat
degradatio | n/loss | (litter, road | mortalities and/or | Alternat | ive 1 | Operation | -1 | 2 | 3 | 3 | 3 | 4 | -11.0 | -1 | 2 | 2 | 3 | 3 | 2 | -5.0 | Medium | 1 | 2 | 1.13 | -5.6 | | | Continued | encroachm
ent of | vegetation | community | by alien invasive | plant | species as | well as
erosion | due to | disturbed
soils | Alternat ive 1 | Decommis sioning | -1 | 2 | 2 | 3 | 3 | 3 | -7.5 | -1 | 2 | 3 | 2 | 2 | 2 | -4 5 | Medium | 2 | 2 | 1.25 | -5.6 | | | Decommis | | olo i i i i g | | | _ | | J | J | 7.10 | | _ | | | | _ | 1.0 | Woodan | _ | | 1120 | 0.0 | | | sioning of | Alternat | Decommis | | | | | | | 0.0 | 4 | | _ | _ | | | 0.0 | Ma-H- | _ | | 4 40 | 0.0 | | | Wells Exploration | ive 1 | sioning | -1 | 2 | 2 | 2 | 2 | 3 | -6.0 | -1 | 2 | 2 | 2 | 2 | 3 | -6.0 | Medium | 2 | 1 | 1.13 | -6.8 | | | Wells - | Alternat | 62 | Habitat | ive 1 | Planning | -1 | 2 | 2 | 2 | 2 | 2 | -4.0 | -1 | 2 | 2 | 3 | 2 | 1 | -2.3 | Medium | 2 | 1 | 1.13 | -2.5 | | | Exploration Wells - | Water | Alternat | Quality | ive 1 | Planning | -1 | 2 | 2 | 2 | 2 | 2 | -4.0 | -1 | 2 | 2 | 3 | 2 | 1 | -2.3 | Medium | 1 | 1 | 1.00 | -2.3 | | 1 | Exploration | Wells - | Alternat | 1 | I | 1 | i | | | | | | | | | | | | • | | | 1 | | | | - | |----|---------------------------------------|----------------|---------------------|----|---|---|---|---|---|------|----|---|---|---|---|---|------|--------|---|---|------|------| | 65 | Access
Roads -
Habitat | Alternat ive 1 | Constructio n | -1 | 2 | 2 | 3 | 2 | 2 | -4.5 | -1 | 1 | 1 | 2 | 2 | 2 | -3.0 | Medium | 1 | 1 | 1.00 | -3.0 | | 66 | Access
Roads -
Water
Quality | Alternat ive 1 | Constructio | -1 | 2 | 3 | 2 | 2 | 3 | -6.8 | -1 | 2 | 2 | 2 | 2 | 2 | -4.0 | Medium | 1 | 1 | 1.00 | -4.0 | | 67 | Access
Roads -
Flow | Alternat ive 1 | Constructio
n | -1 | 2 | 1 | 2 | 2 | 2 | -3.5 | -1 | 1 | 1 | 1 | 1 | 2 | | Medium | 1 | 1 | 1.00 | -2.0 | | 68 | Access
Roads -
Habitat | Alternat ive 1 | Operation | -1 | 3 | 2 | 3 | 2 | 3 | -7.5 | -1 | 1 | 2 | 2 | 2 | 2 | -3.5 | Medium | 1 | 1 | 1.00 | -3.5 | | 69 | Access
Roads -
Water
Quality | Alternat ive 1 | Operation | -1 | 2 | 2 | 2 | 2 | 2 | -4.0 | -1 | 2 | 2 | 1 | 1 | 2 | -3.0 | Medium | 1 | 1 | 1.00 | -3.0 | | 70 | Access
Roads -
Flow | Alternat ive 1 | Operation | -1 | 2 | 2 | 2 | 2 | 2 | -4.0 | -1 | 1 | 2 | 1 | 1 | 2 | | Medium | 1 | 1 | 1.00 | -2.5 | | 71 | Access
Roads -
Habitat | Alternat ive 1 | Decommis
sioning | -1 | 2 | 2 | 3 | 2 | 2 | -4.5 | -1 | 1 | 1 | 2 | 2 | 2 | -3.0 | Medium | 1 | 1 | 1.00 | -3.0 | | 72 | Access
Roads -
Water
Quality | Alternat ive 1 | Decommis sioning | -1 | 2 | 2 | 2 | 2 | 3 | -6.0 | -1 | 2 | 2 | 2 | 2 | 2 | -4.0 | Medium | 1 | 1 | 1.00 | -4.0 | | 73 | Access
Roads -
Flow | Alternat ive 1 | Decommis
sioning | -1 | 2 | 1 | 2 | 2 | 2 | -3.5 | -1 | 1 | 1 | 1 | 1 | 2 | -2.0 | Medium | 1 | 1 | 1.00 | -2.0 |